Skip to main content

Advertisement

Log in

Spatial Variation of Macroinfaunal Communities Associated with Zostera marina Beds Across Three Biogeographic Regions in Atlantic Canada

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

A Correction to this article was published on 26 March 2018

This article has been updated

Abstract

Seagrass beds and their associated species communities play key roles in coastal ecosystems. The importance of the ecological functions provided by eelgrass (Zostera marina) and macroinfauna are well understood; however, the spatial variation and linkage of the two are much less known. Here, we performed large-scale field surveys across three biogeographic regions in Atlantic Canada along the coasts of New Brunswick, Nova Scotia, and Newfoundland. First, we examined variation in eelgrass bed structure (shoot density, canopy height, biomass) and environmental parameters (tissue nitrogen and carbon, sediment organic content, microphytobenthos and annual algae) at 19 sites across the 3 regions. Next, we examined the variation in macroinfauna community composition and summary measures (species richness, diversity, total abundance, and biomass). We then linked the eelgrass bed structure and environmental variables to the macroinfauna community to determine what best explained observed patterns. Our results indicate that eelgrass bed structure and most environmental parameters varied at the site level, whereas most variation in the macroinfauna community was explained by region. Furthermore, the abundance of microphytobenthos was the best predictor of the macroinfauna community. We suggest that in moving forward with protecting and managing eelgrass habitats, eelgrass bed structure should be assessed on a site-by-site basis; however, benthic productivity (microphytobenthos) may be a useful tool in evaluating macroinfauna and ecosystem health on a region-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 26 March 2018

    In the original article there was an error in Fig. 2a. Shoot density was measured in a 0.25 cm × 0.25 cm subset in the quadrat. To get m−2, values were multiplied by 4. However, they should have been multiplied by 16. This does not change the results, only the magnitude of shoot density presented.

References

  • Aller, R.C., and J.Y. Aller. 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. Journal of Marine Research 56 (4): 905–936. https://doi.org/10.1357/002224098321667413.

    Article  CAS  Google Scholar 

  • Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth: PRIMER-E.

    Google Scholar 

  • Boström, C., and E. Bonsdorff. 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37 (1-2): 153–166. https://doi.org/10.1016/S1385-1101(96)00007-X.

    Article  Google Scholar 

  • Cabaço, S., R. Santos, and C.M. Duarte. 2008. The impact of sediment burial and erosion on seagrasses: a review. Estuarine, Coastal and Shelf Science 79 (3): 354–366. https://doi.org/10.1016/j.ecss.2008.04.021.

    Article  Google Scholar 

  • Cadée, G.C., and J. Hegeman. 1977. Distribution of primary production of the benthic microflora and accumulation of organic matter on a tidal flat area, Balgzand, Dutch Wadden Sea. Netherlands Journal of Sea Research 11 (1): 24–41. https://doi.org/10.1016/0077-7579(77)90019-9.

    Article  Google Scholar 

  • Cardoso, P.G., M.A. Pardal, A.I. Lillebø, S.M. Ferreira, D. Raffaelli, and J.C. Marques. 2004. Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. Journal of Experimental Marine Biology and Ecology 302 (2): 233–248. https://doi.org/10.1016/j.jembe.2003.10.014.

    Article  Google Scholar 

  • Clarke, K., and R.N. Gorley. 2006. Primer v6. 1.6: User manual/tutorial. Plymouth Marine Laboratory.

  • Clausen, K.K., D. Krause-Jensen, B. Olesen, and N. Marbà. 2014. Seasonality of eelgrass biomass across gradients in temperature and latitude. Marine Ecology Progress Series 506: 71–85. https://doi.org/10.3354/meps10800.

    Article  Google Scholar 

  • Coll, M., A.L. Schmidt, T. Romanuk, and H.K. Lotze. 2011. Food-web structure of seagrass communities across different spatial scales and human impacts. PLoS One 6 (7): e22591. https://doi.org/10.1371/journal.pone.0022591.

    Article  CAS  Google Scholar 

  • Cullain, N. 2014. Seasonality of eelgrass (Zostera marina) and associated community in Nova Scotia, Canada. Honours thesis, Dalhousie University, Halifax, Canada.

  • Daehnick, A.E., M.J. Sullivan, and C.A. Moncreiff. 1992. Primary production of the sand microflora in seagrass beds of Mississippi sound. Botanica Marina 35: 131–140.

    Article  Google Scholar 

  • Dauer, D.M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin 26 (5): 249–257. https://doi.org/10.1016/0025-326X(93)90063-P.

    Article  Google Scholar 

  • Delgado, M. 1989. Abundance and distribution of microphytobenthos in the bays of Ebro Delta (Spain). Estuarine, Coastal and Shelf Science 29 (2): 183–194. https://doi.org/10.1016/0272-7714(89)90007-3.

    Article  Google Scholar 

  • Desrosiers, G., C. Savenkoff, M. Olivier, G. Stora, K. Juniper, A. Caron, J.-P. Gagné, L. Legendre, S. Mulsow, J. Grant, S. Roy, A. Grehan, P. Scapsi, N. Silverberg, B. Kleine, J.-E. Tremblay, and J.-C. Therriault. 2000. Trophic structure of macrobenthos in the Gulf of St. Lawrence and on the Scotian shelf. Deep Sea Research Part II: Topical Studies in Oceanography 47 (3-4): 663–697. https://doi.org/10.1016/S0967-0645(99)00122-8.

    Article  Google Scholar 

  • DFO. 2009a. Does eelgrass (Zostera marina) meet the criteria as an ecologically significant species? DFO Canadian Scientific Advisory Secretariat Science Advisory Report 2009/018.

  • DFO. 2009b. Development of a framework and principles for the biogeographic classification of Canadian marine areas. DFO Canadian Scientific Advisory Secretariat Science Advisory Report 2009/056.

  • DFO. 2011. Definitions of harmful alteration, disruption or destruction (HADD) of habitat provided by eelgrass (Zostera marina). DFO Canadian Scientific Advisory Secretariat Science Advisory Report 2011/058.

  • DFO. 2015. Proceedings of the sixteenth annual meeting of the Atlantic Zone Monitoring Program (AZMP); 18–20 March, 2014. DFO Canadian Scientific Advisory Secretariat Proceedings Series. 2014/034.

  • Duarte, C.M. 1990. Seagrass nutrient content. Marine Ecology Progress Series 67: 201–207. https://doi.org/10.3354/meps067201.

    Article  Google Scholar 

  • Duarte, C.M. 2002. The future of seagrass meadows. Environmental Conservation 29: 192–206.

    Article  Google Scholar 

  • Dyson, K.E., M.T. Bulling, M. Solan, G. Hernandez-Milian, D.G. Raffaelli, P.C. White, and D.M. Paterson. 2007. Influence of macrofaunal assemblages and environmental heterogeneity on microphytobenthic production in experimental systems. Proceedings of the Royal Society of London B: Biological Sciences 274 (1625): 2547–2554. https://doi.org/10.1098/rspb.2007.0922.

    Article  Google Scholar 

  • Engelsen, A. 2008. Links between macroalgal mats, fauna and sediment biogeochemistry. Doctoral thesis, Göteborg University. Göteborg University, Sweden.

  • Fonseca, M.S., and S.S. Bell. 1998. Influence of physical settings on seagrass landscapes near Beaufort, North Carolina, USA. Marine Ecology Progress Series 171: 109–121. https://doi.org/10.3354/meps171109.

    Article  Google Scholar 

  • Fonseca, M.S., and J.S. Fisher. 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Marine Ecology Progress Series 29: 15–22. https://doi.org/10.3354/meps029015.

    Article  Google Scholar 

  • Frederiksen, M., D. Krause-Jensen, M. Holmer, and J.S. Laursen. 2004. Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting. Aquatic Botany 78 (2): 147–165. https://doi.org/10.1016/j.aquabot.2003.10.003.

    Article  Google Scholar 

  • Gartner, A., F. Tuya, P.S. Lavery, and K. McMahon. 2013. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. Journal of Experimental Marine Biology and Ecology 439: 143–151. https://doi.org/10.1016/j.jembe.2012.11.009.

    Article  Google Scholar 

  • Grebmeier, J.M., and C.P. McRoy. 1989. Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi seas. III. Benthic food supply and carbon cycling. Marine Ecology Progress Series 53: 79–91. https://doi.org/10.3354/meps053079.

    Article  Google Scholar 

  • Greiner, J.T., K.J. McGlathery, J. Gunnell, and B.A. McKee. 2013. Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS One 8: 1–8.

    Google Scholar 

  • Hauxwell, J., J. Cebrian, and I. Valiela. 2003. Eelgrass Zostera marina loss in temperate estuaries: Relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series 247: 59–73. https://doi.org/10.3354/meps247059.

    Article  CAS  Google Scholar 

  • Heck, K.L., and G.S. Wetstone. 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4 (2): 135–142. https://doi.org/10.2307/3038158.

    Article  Google Scholar 

  • Heck, K.L., K.W. Able, C.T. Roman, and M.P. Fahay. 1995. Composition, abundance, biomass, and production of macrofauna in a New England estuary: comparisons among eelgrass meadows and other nursery habitats. Estuaries 18 (2): 379–389. https://doi.org/10.2307/1352320.

    Article  Google Scholar 

  • Heck, K.L., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123–136. https://doi.org/10.3354/meps253123.

    Article  Google Scholar 

  • Hemminga, M.A., and M.A. Mateo. 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Marine Ecology Progress Series 140: 285–298. https://doi.org/10.3354/meps140285.

    Article  Google Scholar 

  • Hemminga, M.A., F.J. Slim, J. Kazungu, G.M. Ganssen, J. Nieuwenhuize, and N.M. Kruyt. 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Marine Ecology Progress Series 106: 291–302. https://doi.org/10.3354/meps106291.

    Article  Google Scholar 

  • Henderson, A.R., and D.J. Ross. 1995. Use of macrobenthic infaunal communities in the monitoring and control of the impact of marine cage fish farming. Aquaculture Research 26 (9): 659–678. https://doi.org/10.1111/j.1365-2109.1995.tb00957.x.

    Article  Google Scholar 

  • Hillebrand, H., B. Worm, and H.K. Lotze. 2000. Marine microbenthic community structure related by nitrogen loading and grazing pressure. Marine Ecology Progress Series 204: 27–38. https://doi.org/10.3354/meps204027.

    Article  CAS  Google Scholar 

  • Joseph, V., A. Locke, and J.G.J. Godin. 2006. Spatial distribution of fishes and decapods in eelgrass (Zostera marina L.) and sandy habitats of a New Brunswick estuary, eastern Canada. Aquatic Ecology 40 (1): 111–123. https://doi.org/10.1007/s10452-005-9027-x.

    Article  CAS  Google Scholar 

  • Kendall, C., E.M. Elliott, and S.D. Wankel. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable isotopes in ecology and environmental science, ed. R.H. Michener and K. Lajtha, 2nd ed., 375–449. Hoboken: Blackwell. https://doi.org/10.1002/9780470691854.ch12.

    Chapter  Google Scholar 

  • Kuo, J., and C. den Hartog. 2007. Seagrass morphology, anatomy, and ultrastructure. In Seagrasses: biology, ecology and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 51–87. Dordrecht: Springer.

    Google Scholar 

  • Larkum, A.W.D., R.J. Orth, and C.M. Duarte. 2006. Seagrasses: biology, ecology and conservation. Vol. 53. Dordrecht: Springer.

    Google Scholar 

  • Laurel, B.J., R.S. Gregory, and J.A. Brown. 2003. Predator distribution and habitat patch area determine predation rates on Age-0 juvenile cod Gadus spp. Marine Ecology Progress Series 251: 245–254. https://doi.org/10.3354/meps251245.

    Article  Google Scholar 

  • Lee, H.W., J.H. Bailey-Brock, and M.M. McGurr. 2006. Temporal changes in the polychaete infaunal community surrounding a Hawaiian mariculture operation. Marine Ecology Progress Series 307: 175–185. https://doi.org/10.3354/meps307175.

    Article  Google Scholar 

  • Lee, K.S., S.R. Park, and Y.K. Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350 (1-2): 144–175. https://doi.org/10.1016/j.jembe.2007.06.016.

    Article  Google Scholar 

  • Lepoint, G., P. Dauby, and S. Gobert. 2004. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems. Marine Pollution Bulletin 49 (11-12): 887–891. https://doi.org/10.1016/j.marpolbul.2004.07.005.

    Article  CAS  Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312 (5781): 1806–1809. https://doi.org/10.1126/science.1128035.

    Article  CAS  Google Scholar 

  • Luczak, C., M.A. Janquin, and A. Kupka. 1997. Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia 345 (1): 87–94. https://doi.org/10.1023/A:1002902626798.

    Article  CAS  Google Scholar 

  • MacIntyre, H.L., R.J. Geider, and D.C. Miller. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19 (2): 186–201. https://doi.org/10.2307/1352224.

    Article  Google Scholar 

  • Marbà, N., D. Krause-Jensen, T. Alcoverro, S. Birk, A. Pedersen, J.M. Neto, S. Orfanidis, J.M. Garmendia, I. Muxika, A. Borja, K. Dencheva, and C.M. Duarte. 2013. Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia 704 (1): 265–278. https://doi.org/10.1007/s10750-012-1403-7.

    Article  Google Scholar 

  • Mayer, L.M., P.A. Jumars, G.L. Taghon, S.A. Macko, and S. Trumbore. 1993. Low-density particles as potential nitrogenous foods for benthos. Journal of Marine Research 51 (2): 373–389. https://doi.org/10.1357/0022240933223738.

    Article  CAS  Google Scholar 

  • McIver, R., I. Milewski, and H.K. Lotze. 2015. Land use and nitrogen loading in seven estuaries along the southern gulf of St. Lawrence, Canada. Estuarine. Coastal and Shelf Science 165: 137–148. https://doi.org/10.1016/j.ecss.2015.08.011.

    Article  CAS  Google Scholar 

  • Miller, D.C., R.J. Geider, and H.L. MacIntyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–212.

    Google Scholar 

  • Moore, K.A., H.A. Neckles, and R.J. Orth. 1996. Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay. Marine Ecology Progress Series 142: 247–259. https://doi.org/10.3354/meps142247.

    Article  Google Scholar 

  • Moore, K.A., K.L. Heck, and F.T. Short. 2006. Zostera: Biology, ecology, and management. In Seagrasses: Biology, ecology and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 361–386. Dordrecht: Springer.

    Google Scholar 

  • Namba, M., H.K. Lotze, and A.L. Schmidt. 2017. Large-scale differences in community structure and ecosystem services associated with of eelgrass (Zostera marina) beds across three regions in Eastern Canada. Estuaries and Coasts (in press).

  • Norling, K., R. Rosenberg, S. Hulth, A. Grémare, and E. Bonsdorff. 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology Progress Series 332: 11–23. https://doi.org/10.3354/meps332011.

    Article  CAS  Google Scholar 

  • Orth, R.J. 1977. The importance of sediment stability in seagrass communities. Ecology of Marine Benthos 6: 281–300.

    Google Scholar 

  • Orth, R.J., K.L. Heck Jr., and J. van Montfrans. 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7 (4): 339–350. https://doi.org/10.2307/1351618.

    Article  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, and F.T. Short. 2006. A global crisis for seagrass ecosystems. Bioscience 56 (12): 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2.

    Article  Google Scholar 

  • Pearson, T.H., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic nrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review 16: 229–311.

    Google Scholar 

  • Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecologica 20 (4): 479–487. https://doi.org/10.1016/S1146-609X(99)00120-4.

    Article  Google Scholar 

  • Phillips, R.C., C. McMillan, and K.W. Bridges. 1983. Phenology of eelgrass, Zostera marina L., along latitudinal gradients in North America. Aquatic Botany 15 (2): 145–156. https://doi.org/10.1016/0304-3770(83)90025-6.

    Article  Google Scholar 

  • Rizzo, W.M., G.J. Lackey, and R.R. Christian. 1992. Significance of euphotic, subtidal sediments to oxygen and nutrient cycling in a temperate estuary. Marine Ecology Progress Series 86: 51–56. https://doi.org/10.3354/meps086051.

    Article  Google Scholar 

  • Rosenberg, R., H.C. Nilsson, and R.J. Diaz. 2001. Response of benthic fauna and changing sediment redox profiles over a hypoxic gradient. Estuarine, Coastal and Shelf Science 53 (3): 343–350. https://doi.org/10.1006/ecss.2001.0810.

    Article  CAS  Google Scholar 

  • Schmidt, A.L., M. Coll, T.N. Romanuk, and H.K. Lotze. 2011. Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllum nodosum habitats. Marine Ecology Progress Series 437: 51–68. https://doi.org/10.3354/meps09276.

    Article  Google Scholar 

  • Schmidt, A.L., J.K.C. Wysmyk, S.E. Craig, and H.K. Lotze. 2012. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnology and Oceanography 57 (5): 1389–1402. https://doi.org/10.4319/lo.2012.57.5.1389.

    Article  CAS  Google Scholar 

  • Schmidt, A.L, M. Coll, and H.K. Lotze. 2016. Regional-scale differences in eutrophication effects on eelgrass (Zostera marina) associated fauna. Estuaries and Coasts (in press).

  • Short, F.T. 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquatic Botany 27 (1): 41–57. https://doi.org/10.1016/0304-3770(87)90085-4.

    Article  CAS  Google Scholar 

  • Short, F.T., and C.A. Short. 2003. The seagrasses of the western North Atlantic. In World Atlas of seagrasses, ed. E.P. Green and F.T. Short, 207–215. London: UNEP-WCMC.

    Google Scholar 

  • Short, F.T., D.M. Burdick, and J.E.I. Kaldy. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnology and Oceanography 40 (4): 740–749. https://doi.org/10.4319/lo.1995.40.4.0740.

    Article  Google Scholar 

  • Short, F.T., T. Carruthers, W. Dennison, and M. Waycott. 2007. Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology 350 (1-2): 3–20. https://doi.org/10.1016/j.jembe.2007.06.012.

    Article  Google Scholar 

  • Short, F.T., T.J.R. Carruthers, M. Waycott, G.A. Kendrick, J.W. Fourqurean, A. Callabine, W.J. Kenworthy, and W.C. Dennison. 2010. Zostera marina. The IUCN Red List of Threatened Species 2010.

  • Simenstad, C.A., and R.C. Wissmar. 1985. δ13C evidence of the origins and fates of organic carbon in estuarine and nearshore food webs. Marine Ecology Progress Series 22: 141–152. https://doi.org/10.3354/meps022141.

    Article  Google Scholar 

  • Smith, C.R., M.C. Austen, G. Boucher, C. Heip, P.A. Hutchings, G.M. King, and I. Koike. 2010. Global change and biodiversity linkages across the sediment–water interface. Bioscience 50: 1108–1120.

    Article  Google Scholar 

  • Snelgrove, P.V.R. 1997. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26: 578–583.

    Google Scholar 

  • Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A.L. Lombana, S.A. Lourie, and K.D. Martin. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57 (7): 573–583. https://doi.org/10.1641/B570707.

    Article  Google Scholar 

  • Sundback, K., A. Miles, and E. Goeransson. 2000. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Marine Ecology Progress Series 200: 59–76. https://doi.org/10.3354/meps200059.

    Article  CAS  Google Scholar 

  • Thom, R.M. 1990. Spatial and temporal patterns in plant standing stock and primary production in a temperate seagrass system. Botanica Marina 33 (6): 497–510.

    Article  Google Scholar 

  • Thom, R.M., A.B. Borde, S. Rumrill, D.L. Woodruff, G.D. Williams, J.A. Southard, and S.L. Sargeant. 2003. Factors influencing spatial and annual variability in eelgrass (Zostera marina L.) meadows in Willapa Bay, Washington, and Coos Bay, Oregon, estuaries. Estuaries 26 (4): 1117–1129. https://doi.org/10.1007/BF02803368.

    Article  Google Scholar 

  • Warren, M.A., R.S. Gregory, B.J. Laurel, and P.V.R. Snelgrove. 2010. Increasing density of juvenile Atlantic (Gadus morhua) and Greenland cod (G. ogac) in association with spatial expansion and recovery of eelgrass (Zostera marina) in a coastal nursery habitat. Journal of Experimental Marine Biology and Ecology 394 (1-2): 154–160. https://doi.org/10.1016/j.jembe.2010.08.011.

    Article  Google Scholar 

  • Warwick, R.M. 1986. A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology 92 (4): 557–562. https://doi.org/10.1007/BF00392515.

    Article  Google Scholar 

  • Warwick, R.M., and T.H. Pearson. 1987. Detection of pollution effects on marine macrobenthos: further evaluation of the species abundance/biomass method. Marine Biology 95 (2): 193–200. https://doi.org/10.1007/BF00409005.

    Article  Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, and G.A. Kendrick. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, USA 106 (30): 12377–12381. https://doi.org/10.1073/pnas.0905620106.

    Article  Google Scholar 

  • Wong, M.C., and M. Dowd. 2015. Patterns in taxonomic and functional diversity of macrobenthic invertebrates across seagrass habitats: a case study in Atlantic Canada. Estuaries and Coasts 38 (6): 2323–2336. https://doi.org/10.1007/s12237-015-9967-x.

    Article  Google Scholar 

  • Wong, M.C., M.A. Bravo, and M. Dowd. 2013. Ecological dynamics of Zostera marina (eelgrass) in three adjacent bays in Atlantic Canada. Botanica Marina 56: 413–424.

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.S. McCain, M. Namba, K. Wilson, A. Dixon, D. Baker, and T. Harington for support during the field surveys and A. Chan for help in the lab. This work was funded by a National Science and Engineering Research Council (NSERC) Discovery grant to HKL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakia Cullain.

Additional information

Communicated by Masahiro Nakaoka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullain, N., McIver, R., Schmidt, A.L. et al. Spatial Variation of Macroinfaunal Communities Associated with Zostera marina Beds Across Three Biogeographic Regions in Atlantic Canada. Estuaries and Coasts 41, 1381–1396 (2018). https://doi.org/10.1007/s12237-017-0354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0354-7

Keywords

Navigation